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Abstract. In this article, we give an explicit construction of the derived moduli stack of Harder-

Narasimhan filtrations on a connected projective scheme over an algebraically closed field k of char-
acteristic 0 by using the methods in [3]. Moreover, we describe the derived deformation theory of

a filtered sheave on a connected projective scheme over k and compare our construction with the

construction by Di Natale in [8].

1. Introduction

Moduli spaces of sheaves are constructed by using the methods of geometric invariant theory. In the
constructions, they are constructed as quotients of open subschemes of Quot schemes that parametrize
semistable sheaves. The moduli schemes parametrize only semistable sheaves. Unstable sheaves have
unique filtrations described by semistable sheaves, which are called Harder-Narasimhan(HN) filtrations.
Although moduli spaces parametrizing unstable sheaves are not constructed as schemes, but as stacks.
Moreover, moduli stacks of HN filtrations with fixed HN types are constructed as quotient stacks of
open subschemes of relative flag schemes (for example, see [37]).

On the other hand, recent developments of derived algebraic geometry are remarkable. As you
can see in [20], the theory of derived algebraic geometry provides a suitable framework for studying
symplectic geometry of moduli stacks. The authors proved that the derived moduli stack of perfect
complexes on a smooth proper Calabi-Yau variety admits a shifted symplectic structure.

We are interested in derived moduli stacks of HN-filtrations. In particular, the aim of this paper
is to give explicit constructions of derived moduli stacks of HN-filtrations as quotient derives stacks.
In the case of stable sheaves, explicit constructions of derived moduli spaces are studied in [3] or
[4]. Moreover, explicit construction of derived Quot and Hilbert schemes are studied in [6] and [7],
respectively.

We use the methods in [3]. In the work, the authors explicitly describe the moduli space of semistable
sheaves on a projective variety X as an open substack of the stack of truncated graded A-modules,
where A := ⊕i≥0Γ(X,OX(i)). In detail, they use a functor from the category of coherent sheaves on
X to the category of [p, q]-graded A-modules defined by Γ[p,q](F ) := ⊕q

i=pΓ(X,F (i)), where F is a
coherent sheaf on X and p, q are nonnegative integers. Then, a derived enhancement of the moduli
of sheaves is constructed by using the structure of the derived moduli of graded A-modules from
Hochschild cohomology. However, we need to have some obstacles in order to use their methods. We
need more detailed analyses of homological algebra of filtered (graded) modules which is developed
by Nǎstǎsescu and Van Oystaeyen [19] and others. We also need to bridge between the deformation
theory of filtered (graded) modules and that of filtered sheaves. We have to study the relation between
HN-filtrations of sheaves and of graded A-modules to get the explicit description. For this, the work
of Hoskins [13] is useful. The author studies HN-filtrations of quiver representations. However, the
definition of slopes of graded A-modules is a little different from that of quiver representations. In
Section 2, we deal with these problems and describe the image of the moduli stack of HN-filtrations with
a fixed HN-type on X inside the moduli stack of filtered [p, q]-graded A-modules explicitly (Theorem
3.15). In Section 3, we construct a derived enhancement of moduli stacks of HN-filtrations and get the
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tangent complex at a point [0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F s] of the derived stack of HN-filtrations on X
(Definition 3.16, Theorem 3.17).

In contrast to our approach, as a functorial approach, Di Natale [8] constructs derived moduli
stacks of filtered perfect complexes (on proper smooth schemes) which are locally geometric by using a
model structure of the category of filtered complexes of modules over rings. In Section 4, we translate
our construction into theories of derived stacks and schemes in the sense of Toën and compare our
construction with that by Di Natale. In [1] or [3], functors between the category of Kronecker modules
or graded modules over rings to the category of coherent sheaves on projective schemes are constructed.
And, they study the relationship between moduli spaces of them. For our purpose, we extend their
argument to the theory of derived geometry, i.e. we construct functors between the category of (filtered)
derived sheaves and the category of (filtered) A∞-modules and study them (Theorem 4.13). At the
end of this section, we mention a simple example of Lagrangian morphisms related to derived moduli
of HN-filtrations (Example 4.15).

Moreover, our construction is useful to study details about symplectic geometry of derived moduli
stacks of HN-filtrations because a theory for studying symplectic geometry of derived quotient stacks
has been developed by Yeung ([35], [36]), recently.

Notation and conventions. We work over an algebraically closed field k of characteristic zero. For
m,n ∈ N,“ for 0� m� n ”means ∃m0∀m ≥ m0∃n0∀n ≥ n0.

2. Preliminaries

2.1. Derived moduli schemes associated to bundles of curved differential graded Lie alge-
bras.

Definition 2.1. ([3]) A curved differential graded Lie algebra is a quadruple (L•, f, d, [·, ·]), where
(L•, [·, ·]) is a Z≥0−graded Lie algebra, f ∈ L2, and d : L• → L• is a degree one morphism of graded
k−vector spaces such that (1) d(f) = 0, (2) d ◦ d = [f, ·].

Remark 2.2. f is called the curving and d the twisted differential. If f = 0, then a triple (L•, d, [·, ·])
is called a differential graded Lie algebra (dgla).

Definition 2.3. ([3]) Let (L•, d, [·, ·]) be a dgla. Let a ∈ L1. Then, a is a Maurer–Cartan element if
a satisfies the equation

da+
1

2
[a, a] = 0.

The set of Maurer-Cartan elements of L is denoted by MC(L).

Theorem 2.4. ([3, 2]) Let X be a scheme over k. Let L be a bundle of curved differential graded
Lie algebra (curved dgla) over X. Then, we can associate a sheaf of differential graded algebras RX

by letting the underlying sheaf of graded OX−algebra be

RX := SymOX
L [1]∨.

The derivation q on RX is defined to be q = q1 + q2 + q3, where q0 : L [1]∨ → Sym0
OX

L [1]∨ is

defined by the curving morphism , q1 : L [1]∨ → Sym1
OX

L [1]∨ = L [1]∨ by the twisted differential and

q2 : L [1]∨ → Sym2
OX

L [1]∨ by the bracket.
This defines a differential graded (dg) scheme (RX , q)(about dg-schemes, see [6]).

Example 2.5. ([3, 2]) Let (L•, d, [·, ·]) be a dgla. X := L1 = Spec(Sym(L1∨)). And, L i → L1 is the
trivial vector bundle with fiber Li(i ≥ 2). Then, {L i}i≥2 have a structure of bundles of curved dgla
over L1 by

Curvatue f : L1 → L 2, a 7→ (a, da+
1

2
[a, a]),

Differential d′ : L i → L i+1, (µ, b) 7→ (µ, db+ [µ, b]),

Bracket [·, ·]′ : L i ×L j → L i+j , ((µ, b), (λ, c)) 7→ (µ+ λ, [b, c]).
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In addtion, we have an isomorphism Spec(H0(RX)) ' MC(L) = Z(f).

2.2. Homological algebra of filtered modules. Let R be a unital commutative ring

Definition 2.6. ([16], [18], [19]) A filtered R-module M is a R-module M with a ascending chains
{M i | i ∈ Z} of R-submodule of M such that if i ≤ 0, M i = 0 and for i � 0, M i = M . When we
denote the minimum integer of the integers by s, we write

0 =M0 ⊂M1 ⊂ · · · ⊂Ms =M.

And, let M1,M2 be filtered R−modules. A homomorphism of filtered R-modules from M1 to M2

is a R−module homomorphism from M1 to M2 preserving their filtration. We denote the set of
homomorphisms by HomR,−(M1,M2).

Definition 2.7. ([16], [18], [19]) Let M be a filtered R-module. Then, associated graded module
gr(M) is defined to be

gr(M) := ⊕M i/M i−1 gri(M) :=M i/M i−1.

Definition 2.8. ([16], [18], [19]) Let I be a filtered R-module. We say I is a filtered injective if the
components gri(I) of the associated graded module are injective R-modules.

Definition 2.9. ([16], [18], [19]) Let M be a filtered R-module. Then, a filtered injective resolution
M is a exact sequence of R-modules

0→M → I0 → I1 → · · ·
such that induced sequences

0→ gri(M)→ gri(I
0)→ gri(I

1) · · ·
are the injective resolutions of gri(M), where I0, I1, · · · be filtered injective R-modules.

Definition 2.10. ([10, 15],) Let M,N be a filtered R-module. Let 0→M → I• be a filtered injective
resolution of R. Then,

ExtiR,−(N,M) := Hi(HomR,−(N, I
•)).

Remark 2.11. In the above definition, ExtR,−(N,M) are independent of the choice of the filtered

resolution of M . In [10, 15], Exti−(N,M) are defined when M,N are filtered coherent sheaves on
algebraic varieties.

Theorem 2.12. ([10, 15]) Let M,N be filtered R-modules. There are spectral sequences.

Extp+q
R,−(N,M)⇐ Epq

1 =

{
0 p < 0∏

i Ext
p+q
R (gri(N), gri−p(M)) p ≥ 0

2.3. Harder-Narasimhan filtration of sheaves and modules.

2.3.1. For sheaves. Let X be a projective k-scheme of finite type and OX(1) be a very ample invertible
sheaf on X.

Definition 2.13. Let P (t), Q(t) ∈ Q[t]. We say P (t)(�)Q(t) if

P (m)

P (n)
(≥)Q(m)

Q(n)
for m� n� 0.

Definition 2.14. ([3, 13]) Let F be a coherent sheaf on X. F is (semi)stable if for every proper
nonzero subsheaf E , P (F , t)(�)P (E , t), where P (F , t) and P (E , t) are the Hilbert polynomials of F
and E with respect to OX(1) respectively.

Definition 2.15. ([13]) Let F be a coherent sheaf on X. The Harder-Narasimhan(HN) filtration of
F is a filtration

0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F s = F

such that the F i/F i−1 are semistable and P (F 1/F 0, t) � P (F 2/F 1, t) � · · · � P (F s/F s−1, t).
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Theorem 2.16. ([13]) Every coherent sheaf on X has a unique HN-filtration

Remark 2.17. Our definitions of stability and HN-filtration are different from those in [15]. However,
these definitions coincide when F is a pure sheaf. A benefit of our definitions is that we can consider
all coherent sheaves within torsion sheaves.

2.3.2. For modules. Let A be a graded k-algebra which is all in non negative degrees and each graded
piece is finite-dimensional and A0 = k.

Definition 2.18. ([3]) Let M be a [p, q]-graded k-module. Let λ : A⊗kM →M be a homomorphism
of graded k-vector space. Then, we call M a λ-module and a k-submodule N of M is a λ-submodule
of M if λ(A⊗k N) ⊂ N .

Remark 2.19. • In the above definition, λ is determined by λ|A[0,q−p]⊗kM

• Any [p, q]-graded A-module M has a natural λ-module structure from the A-module structure
of M .

Definition 2.20. LetM be a [p, q]-graded k-module with dimMp+dimMq 6= 0. Let θp, θq be integers,
then

µ(θp,θq)(M) :=
θpdimMp + θqdimMq

dimMp + dimMq
.

We write µ for µ(θp,θq) when θp, θq are obvious.

Definition 2.21. ([3]) Let M be a [p, q]-graded λ-module. Let θp, θq be integers. M is (semi)stable
with respect to (θp, θq) if for every nonzero proper λ-submodule N , dimNp = dimNq = 0 or“dimNp+
dimNq 6= 0 and µ(θp,θq)(N)(≤)µ(θp,θq)(M)”holds.

Definition 2.22. Let M be a [p, q]-graded λ-module. Let θp := dimMq and θp := −dimMp. The
Harder-Narasimhan(HN) filtration of M is a filtration of λ-submodules of M

0 =M0 ⊂M1 ⊂ · · · ⊂Ms =M

such that the M i/M i−1 are semistable with respect to (θp, θq) and (M1/M0) � (M2/M1) � · · · �
(Ms/Ms−1).

For two [p, q]-graded λ-modules N1, N2, we say N1(�)N2 if dimN2
p = dimN2

q = 0 or“ dimN1
p +

dimN1
q 6= 0 and dimN2

p + dimN2
q 6= 0 and µ(θp,θq)(N

1)(≥)µ(θp,θq)(N
2)”.

Remark 2.23. The above definition is similar to that of quiver representation, but different from it.
The difference derives from the existence of the components Mp+1, · · ·Mq−1 (cf. [24], [38] or [13])

Theorem 2.24. Let M be a [p, q]-graded λ-module. There exists a HN-filtration of M

Proof. We can prove this in the same way as in the proof of [24, Proposition 2.5] or [38, Theorem
2.6] □

Remark 2.25. Every [p, q]-graded λ-module dose not necessarily have a unique HN-filtration because
the relation � in Definition 2.22 is not a stability structure on [25, Def 1.1] (i.e., the seesaw property
does not hold). However, note that this does not have negative effects on this article.

3. Moduli stacks of Harder-Narasimhan filtrations

Notation 3.1. • X : a connected projective scheme over k.
• OX(1) : a very ample imbertible sheaf on X.
• A := Γ∗(OX) = ⊕i≥0Γ(X,O(i)).
• Cohα(X) : the stack of coherent sheaves with Hilbert polynomial α on X.
• FCoh(α1,··· ,αs)(X) : the stack of filtered coherent sheaves on X of type (α1, · · · , αs)

• FCohHN
(α1,··· ,αs)(X) : the stack of Harder-Narasimhan filtrations (of sheaves) of type (α1, · · · , αs) on
X.

• Mod[p,q]α (A) : the stack of graded A-modules of type α|[p,q] in degree [p, q].
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• FMod
[p,q]
(α1,··· ,αs)

(A) : the stack of filtered graded A-modules of type (α1|[p,q], · · · , αs|[p,q]) in degree

[p, q], where αi|[p,q] means a tuple (αi(p), · · · , αi(q)).

• FMod
[p,q],sfg
(α1,··· ,αs)

(A) : the stack of strongly finitely generated filtered graded A-modules of type

(α1|[p,q], · · · , αs|[p,q]) in degree [p, q].

• FMod
[p,q]HN,sfg
(α1,··· ,αs)

(A) : the stack of strongly finitely generated filtered graded A-modules of type

(α1|[p,q], · · · , αs|[p,q]) in degree [p, q] which are HN-filtrations for (α(q),−α(p))-stability.
• Coh(Y ) : the category of coherent sheaves on a scheme Y .
• FCoh(Y ) : the category of filtered coherent sheaves on a scheme Y .

• Mod[p,q](A⊗ OY ) : the category of graded coherent A⊗ OY -modules on Y in the degree [p, q].

• FMod[p,q](A ⊗ OY ) : the category of filtered graded coherent A ⊗ OY -modules on Y in the degree
[p, q].

• Γ[p,q](F ) := ⊕q
i=pπ∗(F (i)) for a coherent sheaf F onX×kY and the natural projection π : X×kY →

Y .

Remark 3.2. When considering any filtered [p, q]-graded A-modules 0 = M0 ⊂M1 ⊂ · · · ⊂ Ms = M ,
it is strongly finitely generated if each M i is graded A-module which is generated in degree p .

3.1. Open embeddings. In this subsection, we construct an open immersion from the moduli stack
of filtered sheaves to that of filtered modules over A

First, we can define the following morphism

Γfil
[p,q] : FCoh(X ×k Y )→ FMod[p,q](A⊗ OY ) (3.1.1)

by Γfil
[p,q](F ) := Γ[p,q](F ) = Γ[p,q](F

s) ⊃ · · · ⊃ Γ[p,q](F
1) ⊃ Γ[p,q](F

0) = 0 for any object F = F s ⊃
· · · ⊃ F 1 ⊃ F 0 = 0 because pushforwards are left exact.

The morphism of category

Γ[p,q] : Coh(X ×k Y )→ Mod[p,q](A⊗ OY )

has the left adjoint S (see [3, Proposition 3.1]).

3.1.1. Monomorphisms.

Lemma 3.3. Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X) : FCohHN

(α1,··· ,αs)(X) → FMod
[p,q]
(α1,··· ,αs)

(A) is monomorphism if

q � p� 0.

Proof. First, let S := {F ∈ Coh(X) | the HN-type of F is (α1, · · ·αs)}. Then, the sets Si = {gri(F ) |
F ∈ S}(i ∈ {1, · · · , s}) are bounded because the stack of HN-filtrations of type (α1, · · · , αs) is a
quotient of a relative flag scheme by an algebrac group (see [37, Lemma 2.5]). So, for p� 0, any sheaf
in ∪iSi is p-regular, and Γfil

[p,q]|FCohHN
(α1,··· ,αs)

(X) is well-defined.

In order to prove Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X) is a monomorphism, we will prove this is fully faithful

because monomorphisms between algebraic stacks are the same as fully faithful functors ([28, Lemma
98.8.4]).

If F ,G are objects of FCohHN
(α1,··· ,αs)(X), we have an isomorphism

HomOX×Y
(F ,G )

≃→ Homgr,A⊗OY
(Γ[p,q](F ),Γ[p,q](G )) q � p� 0

because the induced morphism Γ[p,q] : Uα → Mod[p,q]α (A) is a monomorphism for q � p � 0 ([3,

Proposition 3.2]), where Uα is an open substack of Cohα(X) of finite type. So, Γfil
[p,q] is faithful.

Next we show that Γfil
[p,q] is full. We take integers p, q such that Γ[p,q] : Uαi

→ Mod[p,q]αi
(A) are

monomorphism. Let ψ : Γfil
[p,q](F ) → Γfil

[p,q](G ) be a morphism in FMod[p,q](A). From the above

isomorphism, there exists a morphism ϕ : F → G such that Γ[p,q](ϕ) = ψ. Then, it is sufficient to
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see that ϕ is a morphism in FCoh(X)HN
(α1,··· ,αs)

. We may assume that s = 2. And, we consider the

following diagrams and the corresponce by Γ[p,q] and S :

F 2



φ // G 2



Γ[p,q]F
2



ψ // Γ[p, q]G 2



SΓ[p,q]F
2



Sψ // SΓ[p,q]G
2

F 1

φ′
//

?�

i1

OO

G 1
?�

i2

OO

Γ[p,q]F
1

ψ|
Γ[p,q]F

1

//
?�

Γ[p,q]i1

OO

Γ[p,q]G
1
?�

Γ[p,q]i2

OO

⟳

SΓ[p,q]F
1

Sψ|
Γ[p,q]F

1

//

SΓ[p,q]i1

OO

SΓ[p,q]G
1

SΓ[p,q]i2

OO

⟳�
Γ[p,q] //̂^̂^̂ � S //

, where ϕ and ϕ′ are the morphisms corresponding to ψ and ψ|Γ[p,q]F1 respectively. And, the middle
and the right squares are commutative. A diagram chase and the monomorphisity of Γ[p,q] yield the
commutativity of the left diagram above because that Γ[p,q] is fully faithful and S is a left adjoint to
Γ[p,q] is equivalnt to that S ◦ Γ[p,q] ' id ([28, Lemma 4.24.4]).

□

3.1.2. Étale morphisms. In this subsection, we prove that the morphism of algebraic stacks

Γfil
[p,q] : FCoh(α1,··· ,αs)(X)→ FMod

[p,q]
(α1,··· ,αs)

(A)

is étale. To prove this, we need to consider the deformation theories of FCoh(α1,··· ,αs)(X) and

FMod
[p,q]
(α1,··· ,αs)

(A) and compare them.

First, we consider FMod
[p,q]
(α1,··· ,αs)

(A). 0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V s = V is a filtration of [p, q]-graded

k-vector spaces such that dimkV
i
j = αi(j), where V

i := ⊕q
i=pV

i
j . Then,

L :=

∞⊕
n=0

Ln :=

∞⊕
n=0

Homk−gr(A
⊗n,Endk(V )) = Homk−gr(A

⊗n ⊗ V, V )

has a dgla structure by the Hochschild differential d and the Gerstenhaber bracket [·, ·] (in detail, see
[3] or [2]). Note that when let G := GLgr(V ) (called the gauge group), we have an action of G on L
called the gauge action. However, in our situation, we need to consider the filtration of V . So, we
consider the following graded vector space

L− :=

∞⊕
n=0

Ln
− :=

∞⊕
n=0

Homk−gr(A
⊗n,Endk,−(V )) =

∞⊕
n=0

Homk−gr,−(A
⊗n ⊗ V, V )

(for the above notation, see subsection 2.2). Note that L− is a graded k-vector subspace of L. We can
easily see Hochschild differential and the Gerstenhaber bracket of L is closed in L−. So, (L−, d, [·, ·])
is also a dgla. We also consider the parabolic subgroup P of G consisting of elements preserving the
filtration of V . This also induces an action on L−. And, we have MC(L−) = {µ ∈ Homk−gr,−(V, V ) |
µ induces a filtered graded A-module structure }. So, we have

[MC(L−)/P ] ' FMod
[p,q]
(α1,··· ,αs)

(A) (3.1.2)

Moreover, since L−, is a dgla, we get a differential graded structure on L− by using Theorem 2.4
and Example 2.5. Because the Lie algebra of P is Homk−gr,−(V, V ), we can describe the tangent
and obstruction spaces of a filtered graded A-module (V, µ) by describing the deformation theory of
[MC(L−)/P ]. I.e.,

The infinitesimal deforamtion of (V, µ) is classified by H1((L−, d
µ, [·, ·])),

The obstructions of the deformation of (V, µ) are contained in H2((L−, d
µ, [·, ·]))

, where (L−, d
µ, [·, ·]) is a dgla whose differential dµ is defined by [µ, ·] (for detail, see [3] or [2]).

Although the right-hand sides of the above equalities are equal to the Hochschild cohomology, we need
a lemma to associate them with ExtA−gr,−(−,−) functor (see Remark 3.5).
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Definition 3.4. (for the case of ungraded filtered modules, see [16], [18], [19]) Let P be a filtered
graded A-module. Then, P is filtered projective if gri(P ) is projective object in the category of graded
A-modules for any i.

Let M be a filtered graded A-module. Then, a filtered graded projective resolution of M is a
sequence

· · · → P 1 → P 0 →M → 0

such that the induced sequences

· · · → gri(P
1)→ gri(P

0)→ gri(M)→ 0

are projective resolutions of gri(M) in the category of graded A-module.

Remark 3.5. We have graded versions of Definition 2.6, 2.8, 2.9 as above. And, we can define a graded
version ExtiA−gr,−(−,−) of the filtered Ext functor ExtiA−gr,−(−,−) in Definition 2.10 and have a
graded version of Theorem 2.12.

Lemma 3.6. For filtered graded A-modules M,N , we can calculate Ext−(M,N) by filtered graded
projective resolutions of M . I.e, we have

ExtiA−gr,−(M,N) = Hi(HomA−gr,−(P
•, N))

, where P • →M → 0 is any filtered graded projective resolution of M .

Proof. First, we construct a spectral sequence which is convergent to Hi(HomA−gr,−(P
•, N)) by using

the idea of the proof of [10, Proposition 1.3]. We have a natural filtration of a chain complex C =
HomA−gr,−(P

•, N) :

C=F0C: 0 // HomA−gr,−(P 0,N) // HomA−gr,−(P 1,N) // HomA−gr,−(P 2,N) // ···

F1C: 0 // HomA−gr,−1(P
0,N) //?�

OO

HomA−gr,−1(P
1,N) //?�

OO

HomA−gr,−1(P
2,N) //?�

OO

···

F2C: 0 // HomA−gr,−2(P
0,N) //?�

OO

HomA−gr,−2(P
1,N) //?�

OO

HomA−gr,−2(P
2,N) //?�

OO

···

...

?�

OO

...

?�

OO

...

?�

OO

,where HomA−gr,−i(P
j , N) = {f ∈ HomA−gr(P

j , N) | f((P j)k) ⊂ Nk−i}(i ∈ N). Although filtrations
in Section 2.2 are ascending, note that the above filtration is descending. So, we have a spectral
sequence by [34, Theorem 5.5.1] as follows :

Hp+q(HomA−gr,−(P
•, N))⇐ Epq

1 :=

{
Hp+q(FpC/Fp+1C) p ≥ 0

0 p < 0
.

Because P i is filtered graded projective A-module, by [19, I, Lemma 6.4], we have FpC/Fp+1C is
isomorphic to ⊕iHomA−gr(gri(P

•), gri−p(N)) if p ≥ 0. So, we have

Hp+q(FpC/Fp+1C) = ⊕iExt
p+q
A−gr(gri(M), gri−p(N)) if p ≥ 0.

We have a spectral sequence converging to Hp+q(HomA−gr,−(P
•, N)) and ExtA−gr,−(M,N) (Theorem

2.12, Remark 3.5). Thus, we have Hi(HomA−gr,−(P
•, N)) ' ExtiA−gr,−(M,N). □

We can describe the tangent space and the obstruction space of filtered graded A-module M from
the above discussion and Lemma 3.6.
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Proposition 3.7. For any filtered graded A-module M , then

The infinitesimal deforamtion of M is classified by Ext1A−gr,−(M,M),

The obstructions of the deformation of M are contained in Ext2A−gr,−(M,M).

Proof. This is obtained from Lemma 3.6 and the following isomorphisms:

Homk−gr(A
⊗•,Homk(M,M)) ≃ HomA−A−gr(B(A,A),Homk,−(M,M)) ≃ HomA−k−gr,−(B(A,A)⊗A M,M)

, where B(A,A) is the Bar resilution of A. Note that we have the above from [19, Lemma 8.1] and a
property of Bar resolution and B(A,A) ⊗A M → M → 0 is a filtered graded projective resolution of
M (for the non filtered graded case, see [34, Lemma 9.1.9]). □

Next, we compare the deformation theories of filtered sheaves on X and filtered graded A-modules.
We use the method of [6] where them of sheaves on X and graded A-modules are compared.

Proposition 3.8. ([33]) For any filtered coherent sheaf F , we can describe the deformation theory of
F as follows:

The infinitesimal deformation of F is classified by Ext1−(F ,F ),

The obstructions of the deformation of F are contained = Ext2−(F ,F ).

Lemma 3.9. (a) If F ,G are filtered coherent sheaves on X, then

Exti−(F ,G ) = lim
→
p

ExtiA−gr,−(Γ
fil
≥p(F ),Γfil

≥p(G )).

(b) If M,N are finitely generated filtered graded A-module, then for q � 0, we have

ExtiA−gr,−(M,N) = ExtiA−gr,−(M≤q, N≤q).

Moreover, if let Y be a projective scheme and let M ,N be filtered graded A ⊗ OY -modules
whose coponents are locally free sheaves on Y , then we can choose a q such that for any pair
(My,Ny)(y ∈ Y ), the above equality holds.

Proof. (a) Let S be a category whose objects are finitely generated A-modules and morphisms between
two objects M and N are

HomS(M,N) := lim
→
p

HomA−gr(M≥p, N≥p)

([6, page.406-407]). Note that the category Coh(X) is equivalent to the category S (see [6, Theorem
1.2.2] or [26]). If let HomS,−(M,N) be the subset of HomS(M,N) consisting of filtered preserving
morphisms from M to N . Then, we have HomS,−(M,N) = lim→

p
HomA−gr,−(M≥p, N≥p). Let 0 →

Γfil(G) → I• be a filtered injective resolution of Γfil(G) and let I i := Ĩi. The natural functor from
the A−graded modules to S is an exact functor([21, Theorem 6.7]). So, a filtered graded resolution
in the category of graded A-modules is one in S. Any injective object in the category of the graded
A-modules is injective in S from a direct calculation and the definition of injections in S. It follows
that 0→ Γfil(G)→ I• is also a filtered injective resolution in S. So, 0→ G → I • is a filtered injective
resolution of G . Thus, we have

Exti−(F ,G ) = Hi(Hom−(F ,I •)) = Hi(HomS,−(Γ
fil(F ), I•)

= Hi(lim
→
p

HomA−gr,−(Γ
fil
≥p(F ), I•≥p))

= lim
→
p

Hi(HomA−gr,−(Γ
fil
≥p(F ), I•≥p))

In order to show (a), we have to prove the following claim.

Claim 3.10. For i, p ≥ 0,

Hi(HomA−gr,−(Γ
fil
≥p(F ), I•≥p)) = ExtiA−gr,−(Γ

fil
≥p(F ),Γfil

≥p(G ))
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Proof of Claim 3.10. For simplicity, M := Γfil(F ).First, we have a spectral sequence in the same way
as in the proof of Lemma 3.6 :

Hi+j(HomA−gr,−(M≥p, I
•
≥p))⇐ Eij

1 :=

{
Hi+j(FiC≥p/Fi+1C≥p) i ≥ 0

0 i < 0

, where FiC≥p := {0→ HomA−gr,−i(M≥p, I
0
≥p)→ HomA−gr,−i(M≥p, I

1
≥p)→ · · · }. Then, we see that

FiC≥p/Fi+1C≥p = ⊕kHomA−gr(grk(M≥p), grk−i(I
•
≥p)) if i ≥ 0. (3.1.3)

To prove 3.1.3, we use the idea of the proof of [16, Chapitre V, Lemme 1.4.2]. First, note that each Ii≥p

is a direct sum of truncations of graded injective modules because each Ii is a direct sum of graded
injective modules. When 0 = N0 ⊂ N1 ⊂ · · · ⊂ N t =: N and 0 = J0 ⊂ J1 ⊂ · · · ⊂ J t := J are filtered
graded A-modules and J i+1/J i are injective objects (so each J• is a direct sum of injective objects),
then we have

HomA−gr,−(N≥p, J≥p) = HomA−gr,−(N≥p, J)

= ⊕k=0HomA−gr((N/N
t−k−1)≥p, J

t−k/J t−k−1)

= ⊕k=0HomA−gr((N/N
t−k−1)≥p, (J

t−k/J t−k−1)≥p).

Remark 3.11. The second equal above can be obtained by the following correspondence.

HomA−gr,−(N≥p, J)
// ⊕t−1

k=0HomA−gr((N/N
t−k−1)≥p, J

t−k/J t−k−1)oo

ψ � // ⊕t−1
k=0(prt−k ◦ ψ)

⊕t−1
k=0(ϕt−k ◦ πt−k−1) ⊕t−1

k=0ϕt−k
�oo

where prt−k : J = ⊕t−1
k=0J

t−k/J t−k−1 → J t−k/J t−k−1 and πt−k : N → N/N t−k are the natural
projections.

So, if let M := (M =Ms ⊃Ms−1 ⊃ · · · ⊃M0 = 0) as a filtered module, we have

FiC≥p = HomA−gr,−i(M≥p, I
•
≥p) = ⊕k=0HomA−gr(M≥p/(M

s−i−k−1)≥p, grs−i−k(I
•
≥p)),

FiC≥p/Fi+1C≥p =
⊕
k=0

HomA−gr((M/Ms−k−1)≥p, grs−i−k(I
•
≥p))

HomA−gr((M/Ms−k)≥p, grs−i−k(I•≥p))
.

Then, we apply the functor HomA−gr(−, grs−i−k(I
•
≥p)) to the exact sequence

0→ grs−k(M≥p)→ (M/Ms−k−1)≥p → (M/Ms−k)≥p → 0.

Because I•s−i−k is an injective module and HomA−gr(L≥p, grs−i−k(I
•
≥p)) =

HomA−gr(L≥p, grs−i−k(I
•
≥p)) for a graded A-module L, we have an exact sequence

0→ HomA−gr((M/Ms−k)≥p, grs−i−k(I
•
≥p))→ HomA−gr((M/Ms−k−1)≥p, grs−i−k(I

•
≥p))

→ HomA−gr(grs−k(M≥p), grs−i−k(I
•
≥p))→ 0.

Therefore, we have

FiC≥p/Fi+1C≥p = ⊕k=0Homgr(grs−k(M≥p), grs−i−k(I
•
≥p)).

This is the desired equality.
Finally, because ExtiA−gr(grs−k(M≥p), grs−i−k(I

•
≥p)) = 0 ([6, Lemma 4.3.7]), we have grs−i−k(I

•
≥p)

is HomA−gr((M
s−k/Ms−k−1)≥p,−)−acyclic. Thus, we have

Hi+j(FiC≥p/Fi+1C≥p) = ⊕Exti+j
A−gr(grk(M≥p), grk−i(N≥p)).

So, in the same way as in the proof of Lemma 3.6, we have the claim. □
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Therefore, from Claim 3.10 and the above discussion, we have

Exti−(F ,G ) = lim
→
p

ExtiA−gr,−(Γ
fil
≥p(F ),Γfil

≥p(G )).

(b) Next, it is sufficient to prove that if let F • → M → 0 be a filtered graded free resolution of M
, then for q � 0

ExtiA−gr,−(M≤q, N≤q) = Hi(HomA−gr,−(F
•
≤q, N≤q)).

First note that the truncated complex F •
≤q → M≤q → 0 is a respolution of M≤q (which is not free).

In the same way as in the proof of 3.6, we can get a spectral sequence

Hi+j(HomA−gr,−(P
•
≤q, N≤q))⇐ Eij

1 :=

{
Hi+j(FiC≤q/Fi+1C≤q) i ≥ 0

0 i < 0

, where FiC≤q := {0→ HomA−gr,−i(P
0
≤q, N≤q)→ HomA−gr,−i(P

1
≤q, N≤q)→ · · · }. And, we have

Hi+j(FiC≤q/Fi+1C≤q) = ⊕kExt
i+j
A−gr(grk(M≤q), grk−i(N≤q)) if i ≥ 0

because the similar equality to 3.1.3 holds and ExtiA−gr(M≤q, N≤q) are calculated by using the trun-
cated resolution F •

≤q →M≤q → 0 ([6, page 437]).
The latter claim is proved samely by using the fact any coherent sheaf on a projective scheme Y

has a resolution by graded A ⊗ OY -modules F • which are of the form F i = A ⊗ E • such that each
E i is locally free sheaves of finite rank (see also [6, page 437]). □

Corollary 3.12. There exists q � p� 0 such that

Exti−(F ,F ) = ExtiA−gr,−(Γ
fil
[p,q](F ),Γfil

[p,q](F ))

for all k-points F of FCohHN
(α1,··· ,αs)(X).

Proof. From (a) of Lemma we have 3.9, Exti−(F ,F ) = ExtiA−gr,−(Γ
fil
≥p(F ),Γfil

≥p(F )) for 0 � p.

Moreover, we assume that p, q are independent of F because FCohHN
(α1,··· ,αs)(X) is of finite type.

Then, we apply (b) of the lemma. □

Proposition 3.13. Γfil
[p,q] is an étale morphism if q � p� 0

Proof. This is followed from Proposition 3.7, Proposition 3.8 and Corollary 3.13. For the non-filtered
case, see [3, Proposition 3.3]. □

Finally, we can get the main result in this subsection by combining Lemma 3.3 and Proposition
3.13.

Corollary 3.14. Γfil
[p,q] is an open immersion if q � p� 0

3.2. Explicit descriptions. In this subsection, we describe the image of Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X).

Theorem 3.15. For q � p′ � p� 0, the functor Γfil
[p,q] induces an open immersion

Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X) : FCoh

HN
(α1,··· ,αs)(X)→ FMod

[p,q],sfg
(α1,··· ,αs)

(A)

whose image is equal to the locus of whose truncations into the intervals [p, q] and [p′, q]

are HN-filtrations respectively. We denote this open substack of FMod
[p,q],sfg
(α1,··· ,αs)

(A) by

FMod
[p,q]HN,sfg,[p′,q]HN

(α1,··· ,αs)
(A).

Proof.

Step 1. For p � 0 and any sheaf F with HN-filtration 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F s = F , all
Γfil
[p,q](F

i+1/F i) are generated in degree p because F i+1/F i is assumed to be p-regular. It follows

that Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X) is an open immersion from Corollary 3.14 for q � p� 0.
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Step 2. Next we show any HN-filtration in FCoh(α1,··· ,αs)(X) is sent to a HN-filtration in

FMod
[p,q],sfg
(α1,··· ,αs)

(A) for q � p� 0. Note that for q � p� 0, any coherent sheaf G on X with Hilbert

polynomial α is semistable if and only if Γ[p,q](G ) is semistable with respect to (α(q),−α(p))-stability
by [3, Theorem 3.7]. For two sheaves G1,G2 with Hilbert polynomial α, µ(α(q),−α(p))(Γ[p,q]G1) >

µ(α(q),−α(p))(Γ[p,q]G2) if and only if h0(G1(p))/h
0(G1(q)) > h0(G2(p))/h

0(G2(q)) from the following cal-
culations (a similar statement is mentioned in [13, Lemma 5.2], where representations of quivers are
treated and the slope treated there is different from ours):

µ(α(q),−α(p))(Γ[p,q](Gi)) =
α(q)h0(Gi(p))− α(p)h0(Gi(q))

h0(Gi(p)) + h0(Gi(q))
= −α(p) +

(α(p) + α(q))h0(Gi(p)

h0(Gi(p)) + h0(Gi(q))
(i = 1, 2),

µ(α(q),−α(p))(Γ[p,q](G1))− µ(α(q),−α(p))(Γ[p,q](G2))

= (α(p) + α(q))

(
h0(G1(p))

h0(G1(p)) + h0(G1(q))
− h0(G2(p))

h0(G2(p)) + h0(G2(q))

)
=

(α(p) + α(q))h0(G1(q))h
0(G1(q))

(h0(G1(p)) + h0(G1(q)))(h0(G2(p)) + h0(G2(q)))

(
h0(G1(p))

h0(G1)(q)
− h0(G2(p))

h0(G2)(q)

)
.

If let α(t) :=
∑s

i=1 αi(t), this proves that Γ[p,q](F
i+1/F i) is semistable with respect to (α(q),−α(p))

and µ(α(q),−α(p))(Γ[p,q](F
i+1/F i)) > µ(α(q),−α(p))(Γ[p,q](F

i+2/F i+1)) (cf.[13, Theorem 5.7]). In the
same way, we can show that for q � p′ � p � 0 and any HN-filtration F ∈ FCoh(α1,··· ,αs)(X),
Γ[p,q](F )|≥p′ is also a HN-filtration with respect to (α(q),−α(p′))-stability.

In the rest of the proof, we show the following : For q � p′ � p� 0, any M ∈ FMod
[p,q],sfg
(α1,··· ,αs)

(A)

such that M≥p′ is a HN-filtration is sent to a object of FCohHN
(α1,··· ,αs)(X).

Step 3. LetM =Ms ⊃ · · · ⊃M1 ⊃M0 = 0 be a filtered graded A-module in [p, q] of dimension α|[p,q]
and generated in degree p. Then, we have exact sequences

0→ Ki → A[0,q−p] ⊗k M
i
p →M i → 0

,where Ki := Ker(A[0,q−p] ⊗k M
i
p →M i). They are compatible with the filtrations of M•, A[0,q−p] ⊗k

M•
p and K• when we think of them as filtered modules. Then, if let K ′i ⊂ A ⊗M i

p be a submodule

generated by Ki in A⊗M i
p, then S (M i) ' ˜A⊗k M i

p/K
′i where ˜A⊗k M i

p/K
′i is the associated sheaf

of A⊗kM
i
p/K

′i (see [26], [3, Theorem 3.10]). Note that K ′i is generated in degree p+1 if p� 0. The

functor ˜ is exact. So, any filtered graded A-module in FMod
[p,q],sfg
(α1,··· ,αs)

(A) is sent a filtered coherent

sheaf on X by S .
In the proof of [3, Theorem 3.10], any finitely [p, q]-graded A-module M in degree p with dimension

vector α|[p,q] is sent to a p′-regular coherent sheaf with Hilbert polynomial α and Γ[p,q](S (M))≥p′ '
M≥p′ for q > p′ � p � 0. The choice of p′ is dependent only on p. So, a similar claim holds : for

any (0 = M0 ⊂ M1 ⊂ · · · ⊂ Ms = M) ∈ FMod
[p,q],sfg
(α1,··· ,αs)

(A), it holds that each S (Mi+1)/S (Mi) =

S (M i+1/M i) is p′-regular with Hilbert polynomial αi+1 and Γ[p,q](S (M i))≥p′ ' (M i)|≥p′ for q �
p′ � p� 0.

Step 4. We take q � p′ � p� 0 so that we have (1) : the last sentence of Step 4 holds and (2) : any
coherent sheaf G on X with Hilbert Polynomial αi is semistable if and only if Γ[p,q](G ) (resp. Γ[p′,q](G ))
is semistable with respect to (αi(q), αi(p))-stability (resp. (αi(q), αi(p

′))-stability) for all i (cf. Step

2). Then, any M ∈ FMod
[p,q],sfg
(α1,··· ,αs)

(A) is sent to a filtered sheaf in FCoh(α1,··· ,αs)(X) such that

the S (M i+1/M i) are semistable because (α(q),−α(p′))-stability is equivalent to (αi+1(q),−αi+1(p
′))-

stability. So, S (M) is a HN-filtration and p-regular.
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Step 5. We show Γ[p,q](S (M)) 'M . Note that each (S (M i+1/M i)p,S (M i+1/M i)q) is a semistable

Kronecker module. Then, it follows that Γ(S (M i+1/M i)(q)) ' (M i+1/M i)q from the choice of
q. We also have the natural morphism Γ(S (M i+1/M i)(p)) → (M i+1/M i)p is injective by the
above note (see also [1, Prop 5.13]). Moreover this is an isomorphism because of the dimensions
of Γ(S (M i+1/M i)(p)), (M i+1/M i)p (we use the p-regurality of S (M i+1/M i) ). So, we have a com-
mutative diagram

A[0,q−p] ⊗k (M i+1/M i)p //

≃

��

M i+1/M i

��
A[0,q−p] ⊗k Γ(S (M i+1/M i)(p)) // // Γ[p,q]S (M i+1/M i).

⟳

It follows that the right vertical arrow is isomorphism from the equality of the dimension vectors of
M i+1/M i and Γ[p,q]S (M i+1/M i). Here, we have

0 // M i //

��

M i+1

��

// M i+1/M i //

��

0 (exact)

0 // Γ[p,q]S (M i) // Γ[p,q]S (M i+1) //

⟳

Γ[p,q]S (M i+1/M i) //

⟳

0 (exact)

, where the surjectivity of the arrow Γ[p,q]S (M i+1)→ Γ[p,q]S (M i+1/M i) comes from the p-regularity

of S (M i). If the left and the right vertical arrows are isomorphism, then so is the middle one from
the five lemma. Therefore, inductively we can show that M i ' Γ[p,q]S (M i+1/M i) and this completes
the proof.

□

3.3. Derived enhancement. Finally, we can define derived moduli stacks of Harder-Narasimhan
filtrations. This is our aim in this paper.

Let α1(t), α2(t), · · · , αs(t) ∈ Q[t] such that α1(t) � α2(t) � · · · � αs(t). We take integers p, p′, q

so that Theorem 3.15 holds for Γfil
[p,q]|FCohHN

(α1,··· ,αs)
(X) : FCoh

HN
(α1,··· ,αs)(X)→ FMod

[p,q],sfg
(α1,··· ,αs)

(A). Let

V be an open subscheme of MC(L−) obtained by the pullback of FMod
[p,q],sfg,[p′,q]−HN
(α1,··· ,αs)

(A) from the

following diagram:

MC(L−) // [MC(L−)/P ]

≃
��

FCoh[p,q]

(α1,···αs)
(A) FCoh[p,q]sfg

(α1,···αs)
(A)? _oo FMod

[p,q]HN,sfg,[p
′,q]HN

(α1,··· ,αs)
(A).? _oo

(3.3.1)

And we define a P -equivariant open subscheme U of L1
− to be

U :=

{
λ : A⊗k V → V ∈ L1

− such that the truncations of λ to [p, q] and [p′, q] is

HN-filtrations respectively and V is strongly finitely generated

}
.

Note that the restriction of U to MC(L−) is the image of Γfil
[p,q] in Theorem 3.15.

Definition 3.16. Under the condition above, we the derived moduli stack RFCohHN
(α1,··· ,αs)(X) of

Harder-Narasimhan filtrations of type (α1, · · · , αs) on X is the restriction of the derived moduli stacks
[L−/P ] to [U/P ].

The derived moduli stacks RFCohHN
(α1,··· ,αs)(X) is suiteble for the definition of derived moduli stacks

of HN-filtrations. They have the following property from the discussion from the discussion so far.

Theorem 3.17. We have the following.

(a) Let π0(RFCohHN
(α1,··· ,αs)(X)) := Spec(H0(ORFCohHN

(α1,··· ,αs)
(X))). Then,

π0RFCohHN
(α1,··· ,αs)(X) ' FCohHN

(α1,··· ,αs)(X). (3.3.2)
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(b) If 0 = F 0 ⊂ F 1 ⊂ · · · ⊂ F s = F is a HN-filtration of type (α1, · · · , αs) on X, then

HiT •
[F ]RFCoh

HN
(α1,··· ,αs)(X) ' Exti−(F ,F ) i ≥ 0 (3.3.3)

, where T •
[F ]RFCoh

HN
(α1,··· ,αs)(X) is the tangent dg-space of RFCohHN

(α1,··· ,αs)(X) at F .

Remark 3.18. For the definition of tangent dg-spaces, see [3, Section 1D], [7, Def 5.1.5].

RFCohHN
(α1,··· ,αs)(X) is uniquely determined up to quasi-equivalences of dg-stacks independent of the

choice of p, p′, q.

4. Comparing with another construction of derived moduli stacks of filtered
sheaves

Notation 4.1. • SSet: the category of simplicial sets
• Cat: the category of categories
• Grpd: the category of groupoids
• sCat : the category of simplicial categories
• dg≤0Algk : the category of non-positive graded dg k-algabras

• dg≤0Nil♭k: the full subcategory of dg≤0Algk consisting of C whose natural augmented map C →
H0(C) has a nilpotent kernel and Ci = 0 for all i� 0.

• for C ∈ dg≤0Algk, Spec(C) is the associated affine dg-scheme (cf. [6, Section 2.2])

In this section, we compare our construction of derived stacks of HN-filtrations with that of derived
moduli stacks of filtered sheaves by Di Natale ([8]).

4.1. Translation of our construction. Since we construct derived stacks of HN-filtrations as dg-
stacks, we translate them into derived stacks in the sense of Toën ([29], [32]). In this section, “ derived
stacks and schemes” means derived stacks and schemes in the sense of Toën respectively. So, derived
stacks and schemes are distinguished from dg-stacks and schemes respectively.

Let L−, P be as in Definition 3.16. Let X be Spec(L1
−) and R− be the sheaf of dg-algebras on

X which is associated to L−. In addition, B− := Γ(X,R−). In the context of [31, Section 3.3], our
construction of dg stacks of filtered modules is translated into the language of derived stack.

Definition 4.2. Let RSpec(B−) be the derived scheme associated to B−. Then, from the action of
P on B−, we define a simplicial derived affine scheme

RSpec(B−)×h
k P

• : [n] 7→ RSpec(B−)×h
k

(n−1)-times︷ ︸︸ ︷
P ×h

k · · · ×h
k P .

And, we define

[RSpec(B−)/P ] := Hocolimn∈∆op(RSpec(B−)×h
k P

n).

Definition 4.3. We set Ωn to be the dg algebra

k[t0, t1, · · · , tn, dt0, dt1, · · · , dtn]/(
∑

ti − 1,
∑

dti)

, where ti are degree 0 and dti are degree 1.

By using techniques in [22], we consider a groupoid-valued functor. We define the groupoid-valued

functor F− : dg≤0Nil
♭
k → Grpd as the stackification of the groupoid presheaf

C 7→ [MC(L− ⊗k C)/P ⊗k C
0]act

in the strict étale topology ([22, Def 2.17]), where [MC(L− ⊗k C)/P ⊗k C
0]act means the Deligne

groupoid obtained from the action P ⊗k C0 y MC(L− ⊗k C).

We define a simplicial enrichment F− : dg≤0Nil
♭
k → [∆op,Cat] as

F−(C) : [n] 7→ F−(τ≤0(C ⊗k Ωn))
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, where τ means the canonical truncation functor of cochain complexes. In addition, we applying the
nerve functor N and the right adjoint W̄ to Illusie’s total decalage functor ([22, Def 1.25]) to F− and
we get

(W̄ ◦N)(F−) : dg≤0Nil♭k → SSet.

The following proposition is obtained as in the same way of [22, Prop 3.16, Rmk 3.17]

Proposition 4.4. (W̄ ◦ N)(F−) is an almost finitely presented derived geometric 1-stack. Moreover

the stacks (W̄ ◦N)(F−) and [RSpec(B−)/P ] are weakly equivalent.

Definition 4.5. Let α1, α2, · · · , αs ∈ Q[t] such that α1 � α2 � · · · � αs. Let Ũ ⊂ RSpec(B−) be

the open derived subscheme of RSpec(B−) corresponding to U in 3.16. Note that Ũ is P -invariant.
So, from the weak equivalence of 4.4, we define the corresponding subfuntor of F−. We denote it by
FHN

(α1,··· ,αs)
.

Definition 4.6 ([23, Definition 1.8, 1.13 and Lemma 1.12]). Let G : dg≤0Algk → SSet be a homotopy-
preserving and homotopy-homogeneous functor (e.g. if G is a derived geometric n-stack). For any
C ∈ dg≤0Algk, let x ∈ G(C) be a point. We define the tangent functor

Tx(G/k) : dg≤0ModC // SSet

M
� // Tx(G/k)(M) := G(C ⊕M)×h

G(C) {x}.

We also define
Dn−i

x (G,M) := πi(Tx(G/k)(M [−n])).
Note that Dn−i

x is not dependent on n, i in the above defnition.

Remark 4.7. We have the equvalence of (non-derived) stacks

FCohHN
(α1,··· ,αs)(X) ' π0[Ũ/P ] (4.1.1)

by Definition 4.5 and (1) of Theorem 3.17, where π0[Ũ/P ] is the non-derived stack associated to [Ũ/P ].
From Corollary 3.12, (2) of Theorem 3.17 and Proposition 4.4, We have

HiT •
[F ]RFCoh

HN
(α1,··· ,αs)(X) ' Di

Γfil
[p,q]

(F)([Ũ/P ], k). (4.1.2)

So, our translation of RFCohHN
(α1,··· ,αs)(X) into [Ũ/P ] (and (W̄ ◦N)(FHN

(α1,··· ,αs)
)) is suitable.

4.2. Another construction of deived moduli of HN-filtrations by methods by Di Natale
and Pridham. Here, we construct derived moduli stacks of HN-filtrations by using the method in
[8]. From now, X means a smooth projective variety over k.

Definition 4.8. Let C be a k-algebra. We define QCoh(X ×k Spec(C))flat (resp. FQCoh(X ×k

Spec(C))flat) to be tha category of (resp. filtered) quasi-coherent sheaves on X ×k Spec(C) which are
(resp. whose associated graded sheaves) are flat over Spec(C).

Definition 4.9. Let O• be a cosimplicial k-algebra. We define Mod(O•) (resp. FMod(O•)) to be
the category of cosimplicial O•-modules (resp. filtered cosimplicial O•-modules). We also define
Modcart(O

•) (resp. FModcart(O
•) ) to be the category of cosimplicial cartesian O•-modules (resp.

filtered cosimplicial cartesian O•-modules).
We define dgMod(O•), dgFMod(O•), dgModcart(O

•), dgFModcart(O
•) in the same way.

Example 4.10. Let {Ui}i∈I be afinite open affine covering of X and let U :=
∐

i Ui. We define a
simplicial scheme U• and a cosimplicial k-algebra O(X ×k Spec(C))• as follows;

Un :=

(n+1)−times︷ ︸︸ ︷
U ×X U ×X · · · ×X U =

∐
i0,··· ,in

Ui0···in =
∐

i0,··· ,in

Ui0 ×X · · · ×X Uin ,

O(X ×k Spec(C))n := Γ
(
Un ×k Spec(C),OUn×kSpec(C)

)
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, where C is a k-algebra. Note that dgMod(O(X×k Spec(C))
•) and dgFMod(O(X×k Spec(C))

•) have
model structures ([8, page 835, 844]). Because X×k Spec(C) is quasi-compact and semi-separated, we
have

Ho(dgModcart(O(X ×k Spec(C))•)) ' D(QCoh(X ×k Spec(C))) ([14, Thm 5.5.1]).

In particular, we have a equivalence

Modcart(O(X ×k Spec(C))•) ' Qcoh(X ×k Spec(C)) (4.2.1)

, where the correspondence from the left-hand (resp.right-hand) side to the right-hand (resp.left-hand)
side is obtained by the sheafification functor (resp.the global section functor). Since the sheafification
functor and the global section functor preserve inclusions, we also have a equivalence

FModcart(O(X ×k Spec(C))•) ' FQCoh(X ×k Spec(C)). (4.2.2)

Using approaches by Di Natale and Pridham and Example 4.10, we obtain another construction of
derived moduli stacks of HN-filtrations. We first consider the functor

FModcart(O(X ×k −))flat : Algk // sCat

C � // FModcart(O(X ×k Spec(C))•)flat.

We also define FdgModcart(O(X ×k −)) in the same way . By the flatness of the objects in
FModcart(O(X ×k Spec(C))•)flat, the functor FModcart(O(X) ×k −)flat is embedded in the functor
FdgModcart(O(X ×k −)) and this is an open embedding.

When we denote the subfunctor of FModcart(O(X×k−))flat which parametrizes coherent sheaves by
FModcoh(O(X ×k −))flat, we get a open embedding FModcoh(O(X ×k −))flat ↪→ FModcart(O(X ×k

−))flat.
Let α1, α2, · · · , αs ∈ Q[t] such that α1 � α2 � · · · � αs. We define the functor FModHN

coh,(α1,··· ,αs)

(O(X ×k −))flat by using the equivalence 4.2.2 as follows:

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat : Algk // sCat

C � //


M ∈ FModcart(O(X ×k Spec(C))•)flat such that

the corresponding object in FQcoh(X ×k Spec(C))

is an object in FCohHN
(α1,··· ,αs)(X)

 .

We have an embedding FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat ↪→ FModcoh(O(X ×k −))flat because we

have an open immersion of moduli stacks FCohHN
(α1,··· ,αs)(X) ↪→ FCoh(X). In addition, when let M0

filt

be the functor defined in [8, page 849], we have an open embedding FModHN
coh,(α1,··· ,αs)

(O(X ×k

−))flat ↪→ M0
filt and M0

filt satisfies the conditions of [8, Cor 3.32]. Moreover, the corresponding

groupoid-valued functor π0FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat is a stack because FCohHN
(α1,··· ,αs)(X)

is a stack. Thus, we obtain the following proposition.

Proposition 4.11. The functor FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat satisfies the condtions of [8, Cor

3.32]. To be more precise, we consider the functor

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat : dg≤0Nil
♭
k

// sCat

C � //


M ∈ FdgModcart(O(X ×k Spec(C))•) such that

M is cofibrant and M⊗C H0(C) is weakly equivalent to

an object in FModHN
coh,(α1,··· ,αs)(O(X ×k Spec(H0(C)))•)flat.

 .

Then, the simplicial set-valued functor (W̄ ◦ N)

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat is a derived geo-

metric 1-stack.
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4.3. Comparing two construction of derived moduli spaces of HN-filtrations. We compare
two constructions in Subsection 4.1 and 4.2. We need the following lemma to do it.

Lemma 4.12 ([11, Lemma 6.24]). Let Φ : Y → Z be a morphism of n-geometric derived stacks. Then,
Φ is a weak equivalence if and only if

(1) Φ(C) : Y(C)→ Z(C) is a weak equivalence for any k-algebra C, and
(2) for all k-algebra C, all C-module N and all y ∈ Y(C), the maps Di

y(Y, N)→ Di
Φx(Z, N) are

isomorphisms for all i > 0.

Theorem 4.13. The derived stacks [Ũ/P ] in Definition 4.5 and (W̄ ◦N)

(

FModHN
coh,(α1,··· ,αs)

(O(X×k

−))flat in Proposition 4.11 are weakly equivalent.

Proof.

Step 1. From Proposition 4.4, it is enough to prove (W̄ ◦ N)(FHN
(α1,··· ,αs)

) and (W̄ ◦

N)

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat are weakly equivalent. To construct a morphism between

them, we construct a morphism from FHN
(α1,··· ,αs)

to

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −)z)flat. For all

C ∈ dg≤0Nil♭k, objects of FHN
(α1,··· ,αs)

(C) are given by the triples ({C → Ci}, {ωi}, {gij}), where
(1) C → Ci : strict étale morphisms such that {Spec(C0

i )→ Spec(C0)} is an étale covering,
(2) ωi are objects in FHN

(α1,··· ,αs)
(C),

(3) gij ∈ P ⊗k (C0
i ⊗C0 C0

j ) which induce isomorphisms gij · ωi|Cij ' ωj |Cij and satisfy the

cocycle condtition gij |C0
ijk
◦ gjk|C0

ijk
= gik|C0

ijk
, where Cij := C0

i ⊗C0 C0
j ⊗C0 C and Cijk :=

C0
i ⊗C0 C0

j ⊗C0 C0
k ⊗C0 C.

In other words, a object in FHN
(α1,··· ,αs)

(C) is a filtered graded locally free C0-module M with a

filtered graded unital C-linear A∞-action µ of A ⊗k C on M ⊗C0 C such that H0(M ⊗C0 C) is an

object in FCohHN
(α1,··· ,αs)(X).

Step 2. The condition M has an A∞-action of A ⊗k C induces a dg-action µ′ of A ⊗k C on
BarA⊗kC(M ⊗C0 C) ([6, Proposition 3.9]). In addition, for any dg-module N over a dg-algebra C, we
have a surjection from a sum of shifts C[p] of C and mapping cones Cone(idC[p]) of idC[p] : C[p]→ C[p]
(in detail, see [17]). So, we have a filtered exact sequnece⊕

j∈J

A(−mj)⊗k M
′
j →

⊕
i∈I

A(−ni)⊗k N
′
i → BarA⊗kC(M ⊗C0 C)→ 0 (4.3.1)

, whereM ′
j , N

′
i are C[p] or Cone(idC[p]) for some p (p are different for each ofM ′

j andN
′
i). From the first

map of the above exact sequence, we have a morphism of dg-sheaves on the dg-scheme X ×k Spec(C)⊗
j∈J

(pr∗2M̃
′
j)(−mj)→

⊗
i∈I

(pr∗2Ñ
′
i)(−ni) (4.3.2)

, where M̃ ′
j , Ñ

′
i are the dg-sheafification of M ′

j and N ′
i and pr2 : X ×k Spec(C) → Spec(C) is the

projection. We define S̃ (M ⊗C0 C) to be the cokernel of this map. If we take H0 in 4.3.1, then the
corresonding exact sequence is a free presentation of H0(BarA⊗kC(M ⊗C0 C)) 'M ⊗C0 H0(C). Note

that If N ′
i is a p

′-shift of C[p′] or Cone(idC[p′]), then we can assume p′ ≥ 0 because BariA⊗kC
(M⊗C0C))

for any i > 0. Similary, M ′
j is a p′′-shift of C[p′′] or Cone(idC[p′′]), then we can assume p′′ ≥ 0. This

means that H0(S̃ (M ⊗C0 C)⊗ OX×kSpec(H0(C))) is an object in FCohHN
(α1,··· ,αs)(X) by Theorem 3.15

and its proof. Here, H0 is the functor taking 0-th cohomology of cochain complexes of sheaves. Note
that we can prove H0(S̃ (M ⊗C0 C)⊗OX×kSpec(H0(C))) is flat over Spec(H

0(C)) from the equivalence
in , right adjointness of Γ[p,q] and isomorphisity of the counit maps obtained by adjoints. Then,

we think of S̃ (M ⊗C0 C) as an object in dgFMod(O(X ×k Spec(C))•) by taking the global section
functor. Thus, from the above discussion, we have a morphism of simplicial category-valued functors
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from FHN
(α1,··· ,αs)

to

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat. After that, we take the functor W̄ ◦ N and

obtain a functor between derived stacks

Ψ : (W̄ ◦N)(FHN
(α1,··· ,αs)

)→ (W̄ ◦N)

(

FModHN
coh,(α1,··· ,αs)

(O(X ×k −))flat. (4.3.3)

Step 3. Next, we see that Ψ satisfies the conditions of Lemma 4.12. We have Ψ satisfies the condition
(1) of the lemma from Remark 4.7 and Theorem 3.15. As for the condition (2), for any object

M ∈ (W̄ ◦ N)(FHN
(α1,··· ,αs)

)(C), we have an object F ∈ FCohHN
(α1,··· ,αs)(X) such that M ' Γfil

[p,q](F )

and Exti−(F ,F ⊗L
C N) ' Di

M (W̄ ◦ N)(FHN
(α1,··· ,αs)

), N). And, for any F ∈ FCohHN
(α1,··· ,αs)(X), we

can take a filtered locally free resolution E • → F → 0 and calculate Exti−(F ,F ⊗L
C N) by this

resolution. Moreover, in order to calculate Di
Ψ(M)((W̄ ◦N)

(

FModHN
coh,(α1,··· ,αs)

(O(X×k−))flat, N), we

can take a flat resolution of Ψ(M) instead of a cofibrant resolution (this is because derived functors are
calculated by their deformations. in detail, see [27, Prop 3.4])). Thus, we have the condition (2) from
the equivalence 4.2.2 and the fact that E • → F → 0 is mapped to a flat resolution by this equivalence.
Therefore, Ψ is a weak equivalence and this completes our proof. □
Remark 4.14. We can carry the same argument in the case of derived moduli stacks of (non-filtered)
semistable sheaves: first, we translate the dg-stacks of semistable sheaves constructed in [3] into derived
stacks in the sense of Toën, on the other hand, we construct derived moduli stacks of semistable sheaves
by using techniques of Pridham and Di Natale, finally, we can show weak equivalence between them.

Example 4.15. We provide a simple example of Lagrangian morphisms related to derived moduli
stacks of HN-filtrations. Let X be a projective Calabi-Yau variety of dimension d. Then, the derived
stack RCoh(X) of coherent sheaves on X is equipped with a (2 − d)-shifted symplectic structure (for
example, see [29, Section 5.3]). We also have the derived moduli of filtered coherent sheaves on X is
weakly equivarent to the derived moduli of sequences of morphisms in the dg-category Cohdg(X) of
coherent sheaves on X (cf. [9, Remark 3.6]). Note that derived moduli of sequences of morphisms
of coherent sheaves are defined as in the case of filtered sheaves by using a model structure on the
category of morphisms in a stable model category which is constructed in [12]. Moreover, we can show
that the derived moduli of sequences of morphisms of length 1 in Cohdg(X) is weakly equivalent to
the derived moduli of morphisms in Cohdg(X) which is defined in [30, Definition 3.18] by comparing
their tangent complexes. On the other hand, for any dg-category T over k which is smooth, proper

and equipped with an orientation of dimension d, the derived moduli stack M(1)
T of morphisms in T

has a correspondence

MT ×MT
s,c←−M(1)

T
t−→MT ,

,where s, c, t send morphisms in T to their sources, cones and targets respectively. This induces a
Lagrangian structure with respect to the (2− d)-shifted symplectic structure onM3

T (cf. [29, Section
5.3], [5, Corollary 6.5]). So, considering the above argument and that derived moduli of HN-filtrations
are open substacks of derived moduli of filtered sheaves, we have morphisms from the derived moduli
stacks of length 2 HN-filtrations to RCoh(X)3 which carries Lagrangian structures with respect to the
(2−d)-shifted symplectic sturucture on RCoh(X)3. This gives a symplectic geometrical interpretation
of moduli of unstable sheaves on X.
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[1] L. Álvarez-Cónsul and A. King. “A functorial construction of moduli of sheaves”. Invent. mathematicae 168.3
(2007), pp. 613–666.

[2] K. Behrend and B. Noohi. “Moduli of non-commutative polarized schemes”. Math. Ann. 371.3 (2018), pp. 1375–

1408.



18 REFERENCES

[3] K. Behrend et al. “The derived moduli space of stable sheaves”. Algebr. & Number Theory 8.4 (2014), pp. 781

–812.
[4] D. Borisov et al. Global shifted potentials for moduli stacks of sheaves on Calabi-Yau four-folds. 2022. arXiv:

2007.13194 [math.AG].

[5] C. Brav and T. Dyckerhoff. “Relative Calabi–Yau structures II: Shifted Lagrangians in the moduli of objects”.
Sel. Math. 27.4 (2021), pp. 1–45.

[6] I. Ciocan-Fontanine and M. Kapranov. “Derived quot schemes”. en. Ann. scientifiques de l’École Norm.
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[27] M. Shulman. Homotopy limits and colimits and enriched homotopy theory. 2009. arXiv: math/0610194 [math.AT].
[28] The Stacks Project Authors. Stacks Project. url: https://stacks.math.columbia.edu.
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